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LETIER TO THE EDITOR 
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a random potential 
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Department of Theoretical Physics, The University, Manchester M13 SPL, L K  

Received 29 June 1992 

Abstract. The cluster stIUctuns of the Eden model and direcfed polymers in a random 
potential are described. The heights h,  and widths wr of each duster gmws as h, - s l  
and w, - s”I with ”11 = z / ( d  - 1 + z )  and VI = l / ( d  - 1 + z )  in d dimensions 
where s is the size of the cluster and I is the dynamic aitical exponent. Generalization 
lo include the cluster size distribution is discusred. 

Over recent years, there have been considerable efforts in studying the surface 
structure of the Eden model [l]. It is related through various mappings m other 
physical problems such as ballistic aggregation [Z], the directed polymer in a random 
potential [3] and the Kardar-Parisi-Zhang equation [4]. Most efforts concentrated 
on studying the surface structure, especially on determining the exponents governing 
the surface fluctuations. In a finite system of size L, the standard deviation u(h) of 
the surface height starting from a flat substrate scales as [SI 

u(h)  - L x f ( h / L ” )  (1) 

where h is the average height of the surface and the scaling function f(x) is xxIz 
for z < 1 and is constant for I B 1. Note that there is a correlation length E - h’/”. 
The fluctuation of the surface height U increases with h and becomes saturated when 
the correlation length [ is of order L. In dimension d = 2 (we shall usually write 
d = 2 as d = 1 + 1 to indicate that there is one substrate direction and one growing 
direction) the exponents are known [4,6] to be x = 1/2 and z = 3/2. However the 
values of the exponents in higher dimensions have not been settled yet. 

Recently, Meakin [7] investigated the bulk structure by dividing the whole pattem 
of Eden growth into individual connected clusters. In off-lattice ballistic deposition, 
the incoming particle makes contact with only one particle in the previously deposited 
nucleation surface. So, the bulk structure can be divided into clusters (or trees) which 
are collections of particles connected to the same nucleation site. In a similar way, 
the bulk structure of the Eden model or the lattice version of ballistic deposition 
growth can be divided into clusters. For each cluster, the maximum width w b  and 
maximum height h, follows scalig 

ws -syL and h, - S”ll (2) 
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where s is the size of the cluster. Alternatively, h, can be defined as the standard 
deviation of the height from the substrate. The size distribution n ( s )  which is the 
number of clusters of size s per unit area can be described by a power law [SI 

I n ( s )  - s-'f(s*-'/h) (3) 

r = 2 - u  I1 (4, 

where h is the average height. The exponents 7 and vlI satisfy a scaling relation 

when the fractal dimensionality of the bulk is equal to the Euclidean dimensionality 
[SI. Here we report a relation between the exponents vlI and vL gweming each 
cluster and the exponent z controlling the surface fluctuations. 

We have already mentioned that there is a parallel (to the substrate) correlation 
length E - h'l" for h << Lz in equation (1). Since the bulkstructure in the off- 
lattice. ballistic deposition model is divided into unconnected clusters, the height has 
a correlation up to the cluster width. So, we may regard the correlation length E as 
the width of the cluster giving a relation 

w ,  - < - hi/" (5) 

for h, << Lz. The correlation length becomes proportional to the size of the system 
when the width of the cluster becomes of order L. From the definition of vL and yI 
in equation (2), equation (5) implies 

zvL = VII. (6) 

If the individual clusters are compact, then the cluster size s is given by 
s - wt- lhs  - h~d- 'cz ) / z  - svll(d-l+z)~z. Wth equations (4) and (6), we obtain 

2 d - 2 + ~  
U11 = d - l + z  I -  d - l + z  d - l + z  

and 7 - =  
z 1 v -  

for compact clusters where there is a relation [7] 

U,, + ( d  - l ) U L  = 1. (8) 

Numerical results [7] vll = 0.60 - 0.61 and uL = 0.40 - 0.41 for the ballistic model 
and the Eden model in d = l + l  are in an excellent agreement with 0.6 and 0.4 given 
by equation (7) with exact value z = 3/2. If we assume z = 2(d  + l ) / (d  + 2) [9], 
then vlI = 4/9 z 0.444 and ul = 5/18 z 0.278 in d = 2 + 1. These are in a good 
agreement with the numerical results ulI = 0.45-0.47 and vL = 0.27-0.29 obtained 
from the growth models. 
Ta check the power law distribution of cluster sizes, we consider the same directed 

polymer model described before by us [lo]. The model is briefly outlined here for 
completeness. Consider a directed polymer on a discrete 'hyper-cubic' structure 
with random potential p ( z , t )  assigned to each site ( z , t )  where z is the ( d  - 1)- 
dimensional transverse vector and t is the longitudinal length of the polymer in 
the direction for which no reverse step is allowed. The walk is restricted by 
Iz(t)  - z( t  + 1)1 = 0 or 1, but there is a biassing or bending factor y against 
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walks such that Iz(t) - z(t + 1)1 = 1. At zero temperature the minimum energy 
E(z,t) of the polymer ending at ( z , t )  is calculated recursively, for example in 
d = l + l  

E(r,t) =Min[E(r,t- 1) + P ( Z , t  - l), E(Z+ 1,t - 1) + P ( Z +  1,i - 1) + Y ,  
E(. - 1,t - 1) + p(Z - 1,t - 1) + y] (9) 

where Min takes the minimum value. In the transverse direction the lattice has 
periodic boundary conditions. Using equation (9) the origin of the optimal path 
zu = zu(z, t )  is recorded for each (z , t ) .  In analogy with the growth model, 
a cluster is deEned as a collection of all the points (zJ) whose origins are the 
same. Since ((z - z , , ) ~ ) ~ / ~  - t*/", the width of each duster is expected to grow 
as t l /" .  The number of clusters of size s are measured at t = ux) on system size 
L = 100 OOO ( d  = 1 + l), L = 500 ( d  = 2 + 1) and L = 100 ( d  = 3 + 1) with 
twenty independent runs. me In n( s) versus Ins curves are shown in figure 1. From 
the least squares fit to the data we get 

7 = 1.40 *'0.02 d = 1 + 1 
~=1.553zO.o2 d = 2 + 1  (10) 
T = 1.63 rt 0.02 d = 3 + 1. 

These dues are in a perfect agreement with those given by equation (7): T = 
1.400 ( d  = 1 + l), 7 z 1.556 ( d  = 2 + 1) and z 1.643 ( d  = 3 + 1) with 
z % 2(d + I)/(d + 2) [9,10]. Notice that these results are the same as those 
obtained from the Eden model and the ballistic deposition model in d = 1 + 1 and 
d = 2 + 1 confirming that both the growth models and the directed polymer in a 
random potential problem belong to the same universality class [7,11]. There is an 
assumption that the individual clusters are compact for the derivation of equation 
(7), the above results support it even in d = 3 + 1. 
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Pigum t Cluster size distribution n(s) as a function of size a on the direned polymer 
h a random ,potential. -0.5 (d = 2 + 1) and -1 (d = 3 + 1) are added to In n(s) to 
avoid w e r m d i n g .  



L36 Letter to the Editor 

Kondoh et a1 [12] studied Scheidegger's river network model [13] and found that 
vI = 1/3 and y,  = 2/3 which are different from the values of the Eden model. 
Since z = 2 of the Scheidegger's model are different from z = 3/2 of the Eden 
model in d = 1 + 1, they should belong to ditferent universality classes. 

There have been several studies to understand the drainage area of river networks 
[14]. The tree structure of each cluster would seem similar to that of a river network. 
In directed polymer language, the random potential p(z,t) can be interpreted as 
the local height fluctuation from the tilted surface. Then the path of a river follows 
an optimal route minimizing the sum of the heights on the path to reduce the 
gravitational potential energy. Since the value y, = 0.6 of the growth models in 
d = 1 + 1 is in good agreement with Hack's measurement 2vlI = 1.2 - 1.4 on rivers 
[U], the directed polymer in a random potential can be a good model to describe 
the river basin. 

In this letter, we have shown a relation between the critical exponents yI and vL 
controlling the individual cluster and the dynamic critical exponent z of the surface 
structure. The numerical results of the exponents yI , vL and i of the Eden model 
and T for the directed polymer in a random potential are in excellent agreement 
with equation (7). It would be interesting to test the results of equation (7) on other 
models such as the restricted solid on solid growth model [9] in higher dimensions. 

I would l i e  to thank A J Bray, M Matsushita and M A Moore for useful discussions. 
This work was supported by the UK SERC 
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