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LETTER TO THE EDITOR

Claster structure of the Eden model and directed polymers in
a random potential

Jin Min Kimt
Department of Theoretical Physics, The University, Manchester M13 9PL, UK

Received 29 June 1992

Abstraet. The cluster structures of the Eden model and directed polymers in a random
potential are described. The heights ko and widths w, of each cluster grows as ki, ~ ™0
and w, ~ $¥L with o = z/(d -1+ 2} and ¥; = 1f/(d =1+ z) in d dimensions
where s is the size of the cluster and 2 is the dynamic critical exponent. Generalization
to include the cluster size distribution is discussed,

Over recent years, there have been conmsiderable efforts in studying the surface
structure of the Eden model [1). It is related through various mappings to other
physical problems such as ballistic aggregation [2], the directed polymer in a random
potential [3] and the Kardar-Parisi-Zhang equation [4]. Most efforts concentrated
on studying the surface structure, especially on determining the exponents governing
the surface fiuctuations. In a finite system of size L, the standard deviation o(h) of
the surface height starting from a flat substrate scales as [5]

o(h) ~ LX f(htL?) €3]

where h is the average height of the surface and the scaling function f(z) is «X/*
for « < 1and is constant for z > 1. Note that there is a correlation length & ~ h1/%,
The fluctuation of the surface height o increases with h and becomes saturated when
the correlation length £ is of order L. In dimension & = 2 (we shall usually write
d=2as d = 141 to indicate that there is one substrate direction and one growing
direction) the exponents are known {4,6] to be x = 1/2 and z = 3/2. However the
values of the exponents in higher dimensions have not been settled yet.

Recently, Meakin [7] investigated the bulk structure by dividing the whole pattern
of Eden growth into individual connected clusters. In off-lattice ballistic deposition,
the incoming particle makes contact with only one particle in the previously deposited
nucleation surface. So, the bulk structure can be divided into clusters (or trees) which
are collections of particles connected to the same nucleation site. In a similar way,
the bulk structure of the Eden model or the lattice version of ballistic deposition
growth can be divided into clusters. For each cluster, the maximum width w, and
maximum height ~, follows scaling

w,~s"* and A, ~s"l ©
t Current address: Department of Physics, University of Maryland, College Park, MD 20742, USA.

0305-4470/93/020033+04507.50 (@ 1993 1OP Publishing Ltd L33



.34 Letter to the Editor

where s is the size of the cluster. Alternatively, k, can be defined as the standard
deviation of the height from the substrate. The size distribution n(s) which is the
number of clusters of size s per unit area can be described by a power law [8]

n(s) ~ s~ f(s*7 [h) &)
where k is the average beight. The exponents T and »y satisfy a scaling relation

when the fractal dimensionality of the bulk is equal to the Euclidean dimensionality
[8]. Here we report a relation between the exponents uy and v, governing each
cluster and the exponent z controlling the surface fluctuations.

We have already mentioned that there is a parallel (to the substrate) correlation
length & ~ hY* for h « L* in equation (1). Since the bulk. structure in the off-
lattice ballistic deposition model is divided into unconnected clusters, the height has
a correlation up to the cluster width. So, we may regard the correlation length £ as
the width of the cluster giving a relation

w, ~ &~ RY? )

for h, < L. The correlation length £ becomes proportional to the size of the system
when the width of the cluster becomes of order L. From the definition of v, and
in equation (2), equation (5) implies

zv) = . ©)

If the individual clusters are compact, then the cluster size s is given by
5~ wd=Th, ~ pETIFDE | ouy(@-142)/2 | With equations (4) and (6), we obtain

_ z _ 1 _2d=-242
T d=1+4= v"'_d-1+z and T= d-—14+ = Q)

“

for compact clusters where there is a relation {7]

Numerical results [7] v = 0.60 — 0.61 and v, = 0.40 — (.41 for the ballistic model
and the Eden model in d=1+1 are in an excelient agreement with 0.6 and (.4 given
by equation (7) with exact value z == 3/2. If we assume z = 2(d + 1)/(d + 2) [9],
then vy = 4/9 2 0.444 and v, = 5/18 2 0.278 in d = 2 + 1. These are in a good
agreement with the numerical results 2 = 0.45-0.47 and v, = 0.27-0.29 obtained
from the growth models.

To check the power law distribution of cluster sizes, we consider the same directed
polymer model described before by us {10]. The model is briefly outlined here for
completeness. Consider a directed polymer on a discrete ‘hyper-cubic’ structure
with random potential p(,t) assigned to each site (x,t) where z is the (d — 1)-
dimensional transverse vector and ¢ is the longitudinal length of the polymer in
the direction for which no reverse step is allowed. The walk is restricted by
|£(t) — =(t + 1)] = 0 or 1, but there is a biassing or bending factor v against
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walks such that |x(f) — =(¢ + 1)} = 1. At zero temperature the minimum energy
E(w,t) of the polymer ending at (=,t) is calculated recursively, for example in
d=1+1

E(x:t) =Nﬁn[E(l‘at— 1) +J”("c’-t_1), E(£+1’t—1)+#(3+1s1_1) + 7,
B(z—1,t— 1) + p(z - 1,t~1) + 4] ©)

where Min takes the minimum valve. In the transverse direction the lattice has
periodic boundary conditions. Using equation (9) the origin of the optimal path
xy = xp(@,t) is recorded for each (x,%). In analogy with the growth model,
a cluster is defined as a collection of all the points (x,1) whose origins are the
same. Since {(x —x,)3)Y/2 ~ ¢/, the width of each cluster is expected to grow
as t/2. The number of clusters of size s are measured at ¢ = 200 on system size
L=100000(d=14+1), L=500(d=2+1)and L =100 (d =3+ 1) with
twenty independent runs. The In n(s) versus Ins curves are shown in figure 1. From
the least squares fit to the data we get

r=1402002 d=1+1
T=155+002 d=2+1 (10)
r=163+002 d=3+1.

These values are in a perfect agreement with those given by equation (7): 7 =
1400 (d = 14+ 1), 7 =~ 1.556 (d = 2+ 1) and v = 1.643 (d = 3 + 1) with
z = 2(d+1)/(d + 2) [9,10]. Notice that these results are the same as those
obtained from the Eden model and the ballistic deposition model in d = 14 1 and
d = 2 + 1 confirming that both the growth models and the directed polymer in a
random potential problem belong to the same universality class [7,11]. There is an
assumption that the individual clusters are compact for the derivation of equation
(7), the above results support it even in d =3 + 1.

-4

-4

ln nis)

ln s

Figure 1. Cluster size distribution »(3) as a function of size s on the directed polymer
i a random potential, —-0.5 (d =2+ 1) and —1 (d = 3 4 I) are added to hn(s) to
avoid overcrowding.
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Kondoh et af [12] studied Scheidegger’s river network model {13} and found that
v; = 1/3 and v = 2/3 which are different from the values of the Eden model.
Since z = 2 of the Scheidegger’s model are different from z = 3/2 of the Eden
model in d = 1 4 1, they should belong to different universality classes.

There have been several studies to understand the drainage area of river networks
[14]. The tree structure of each cluster would seem similar to that of a river network.
In directed polymer language, the random potential u{z,t) can be interpreted as
the local height fluctuation from the tilted surface. Then the path of a river follows
an optimal route minimizing the sum of the heights on the path to reduce the
gravitational potential energy. Since the value vy = 0.6 of the growth models in
d =141 is in good agreement with Hack’s measurement 224, = 1.2 — 1.4 on nivers
[15], the directed polymer in a random potential can be a good model to describe
the river basin.

In this letter, we have shown a relation between the critical exponents vy and v
controlling the individual cluster and the dynamic critical exponent = of the surface
structure. The numerical results of the exponents vy, v, and 7 of the Eden model
and 7 for the directed polymer in a random potential are in excellent agreement
with equation (7). It would be interesting to test the results of equation (7) on other
models such as the restricted solid on solid growth model [9] in higher dimensions.

I would like to thank A J Bray, M Matsushita and M A Moore for useful discussions.
This work was supported by the UK SERC.
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